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Deep learning algorithms for detection of critical findings in
head CT scans: a retrospective study

Sasank Chilamkurthy, Rohit Ghosk, Swetha Tanamala, Mustafa Biviji, Norbert G Campeats, Vasantha Kumar Venugopal, Vidur Mabajan,
Pooja Rao, Prashant Warier

Summary -

Background Non-contrast head CT scan is the current standard for initial imaging of patients with head trauma or
stroke sympltoms. We aimed to develop and validate a set of deep leaming alporithms for automated detection of the
following key findings from these scans: intracranial haemorrhage and its types (ie, intraparenchymal, intraventricular,
subdural, extradural, and subarachnoid); calvarial fractures; midline shift; and mass effect.

Methods We retrospectively collected a dataset containing 313 318 head CT scans together with their clinical reports
from around 20 centres in India between Jan 1, 2011, and June 1, 2017. A randomly selected part of this dataset
(Qure25k dataset) was used for validation and the rest was used to develop algorithms. An additional validation
dataset (CQ500 dataset) was collected in two batches from centres that were different from thoese used for the
development and Qure25k datasets. We excluded postoperative scans and scans of patients younger than 7 years. The
original clinical radiology report and consensus of three independent radiologists were considered as gold standard
for the Qure25k and CQ500 datasets, respectively. Areas under the receiver operating characteristic curves (AUCs)
were primarily used to assess the algorithms.

Findings The Qure25k dataset contained 21 095 scans (mean age 43 years; 9030 [43%] female patients), and the CQ500
dataset consisted of 214 scans in the first batch {mean age 43 years; 94 [44%)] female patients) and 277 scaps in the
second batch {mean age 52 years; 84 [30%] female patients). On the Qure25k dataset, the algorithms achieved an AUC
of 0.92 (95% CI 0-91-0-93) for detecting intracranial haemorrhage (0-90 [0.89-0-91] for intraparenchymal, 0-96
[0-94—0-97] for intraventricular, 0:92 [0-90-0-93] for subdural, 0-93 [0-91-0.95] for extradural, and 0-90 [0-89-0-92]
for subarachnoid). On the CQ500 dataset, AUC was 0-94 (0-92-0-97) for intracranial haemorrhage (0-95 [0-93—0-98],
0-93 [0-87-1.00], 0-95 [0-91-0.99}, 0-97 [0-91-1.00], and 0-96 [0-92-0-99], respectively). AUCs on the Qure25k
dataset were 0-92 (0-91-0-94) for calvarial fractures, 0-93 (0-91-0-94) for midline shift, and 0- 86 {0-85-0-87) for mass
effect, while AUCs on the CQ500 dataset were 0-96 (0-92-1-00), 0-97 (0-94-1-00), and 0'-92 (0. 89-0.95), respectively.

Interpretation Our results show that deep learning algorithms can accurately ideﬁf:ify head CT scan abnormalities
requiring urgent attention, opening up the possibility to use these algorithms to automate the triage process.

Funding Qure.ai.

Copyright © 2018 Elsevier Ltd. All rights reserved.

Introduction
Non-contrast head CT scans are among the most
commonly used emergency room diagnostic tools for
patients with head injury or for those with symptoms
suggesting a stroke or rise in intracranial pressure. The
wide availability and low acquisiion time of these
scans make them a commonly used first-line diagnostic
methed.! The percentage of annual US emergency room
visits that involve a CT scan has been increasing for the
past few decades? and the use of head CT to exclude the
need for neurosurgical intervention is on the rise.®

The most critical, time-sensitive abnormalities that
can be readily detected on CT scan include intracranial
haemorrhages, raised intracranial pressure, and cranial
fractures. A key assessment goal in patients with stroke
is exclusion of an intracranial haemorrhage, which
depends on CT imaging and its swift interpretation.*
Simnilarly, immediate CT scan interpretation is crucial

in patients with a suspected acute intracranial
haemorrhage to assess the need for neurosurgical
treatrnent. Cranial fractures, if open or depressed, will
usually require urgent neurosurgical intervention.
Cranial fractures are also the most commonly missed
major abnormality on head CT scans,® espedially if
coursing in an axial plane. g

Although these abnormalities are found on only a small
proportion of CT scans, streamlining the head CT scan
interpretation workflow by automating the initial triage
process has the potential to substantially decrease time to
diagnosis and expedite treatment, which might in turn
decrease morbidity and mortality consequent to stroke and
head injury. An automated head CT scan triage sysiem
might also be vaiuable for queue management in a busy
trauma care setting, or could facilitate decision making in
remote locations without availability of an immediate
radiologist.
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The past year has seen several advances in application
of deep learning®® for medical imaging interpretation
tasks, with robust evidence that deep leamning can
perform specific medical imaging tasks including
identifying and grading diabetic retinopathy® and
classifying skin lesions as benign or malignant® with
accuracy equivalent to specialist physicians. Deep
learning algorithrs have also been trained to detect
abnormalities on radiclogical images such as chest
radiographs,” chest CL** and head CT* through
classification algorithms, as well as to localise and
quantify disease patterms or anatomical volumes*
through segmentation algorithms.

The development of an accurate deep learning
algorithm for radiology requires—in addition to
appropriate model architectures—a large number of
accurately labelled scans that will be used to train the
algorithm.” The chances that the algorithm generalises
well to new settings increase when the training dataset is
large and includes scans from diverse sources.”

We describe the development and validation of fully
automated deep learning algorithry that are trained to
detect abnormalities requiring urgent attention on
non-contrast head CT scans. The trained algo-
rithms detect five types of intracranial haemorrhage
(namely, intraparenchymal, intraventricular, subdural,
extradural, and subarachnoid) and calvarial (cramial
vault} fractures. The algorithms also detect mass effect
and midline shift, both used as indicators of severity of
the brain injury.

Methods

Datasets

We retrospectively collected 313318 anonymous head
-CT scans from around 20 cenires in India between
Jan 1, 2011, and June 1, 2017 These centres, which
included both in-hospital and outpatient radiology
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centres, use a range of CT scanner models (listed in
the appendix, p 4) with slices per rotation ranging - SeeOnlineforappendix
from 2 to 128. Each of the scans had an electronic
clinical report associated with. it, which we used as the
gold standard during the algorithm development process.

Of the 313318 scans, we selected scans of
23263 randomly chosen patients (Qure25k dataset) for
validation and used the scans of the remaining patients
{development dataset) to train and develop the
algorithms. We removed postoperative scans and scans
of patients younger than 7 years from the Qure25k
dataset. This dataset was not used during the a]gont}un
developtnent process.

An additional validation dataset (CQ500 dataset) was
provided by the Centre for Advanced Research in
Irnaging, Neurosciences and Genomics, New Delhi,
India. This dataset was a subset of head CT scans taken
at six radiclogy centres in New Delhi between Jan 1, 2012,
and Feb 1, 2018. Half the centres are stand-alone
outpatient centres and the other half are radiology
departments embedded in large hospitals. There was no
overlap between these centres and those used to obtain
the development dataset or Qure25k dataset. CT scanners
used at these centres had slices per rotation varying from
16 to 128 (see appendix p 4 for list of models). Data were
pulled from local picture archiving and communication
systern (PACS) servers and anonymised in compliance
with internally defined Health Insurance Portability and
Accountability Act (HIPAA) guidelines. Because both
datasets were retrospectively obtained and fully
anonymised, the study was exempt from institutional
review board approval.

Similar to the development and Qure25k datasets,
clinical radiology reperts associated with scans in the
CQ500 dataset were available. Although we did not use
them as gold standards in this study, we used them for
the dataset selection.
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We collected the CQ500 dataset in two batches. The
first batch was collected by selecting all head CT scans
taken at the centres for 30 days starting from Nov 20, 2017
The second batch was selected from the remaining scans.
First, a natural language processing (NLP) algerithm
was used to détect intraparenchymal, intraventticular,
subdural, extradural, and subarachnoid haemorrhages,
and calvarial fractures from clinical radiclogy reports.
Second, reports were randomly selected so that there
were around 80 scans with each of intraparenchymal,
subdural, extradural, and subarachnoid haemeorrhages,
and calvarial fractures. Each of the selected scans were
then screened for the following exclusion criteria:
postoperative defect; absence of non-contrast (plain) axial
geries covering complete brain; and patient was younger
than 7 years (estimated from cranial sutures® if data were
unavailable).

Follow-up scans for a patient were not excluded in the
selection process. We removed any duplicate scans found
in the dataset.

Reading the scans
Three senior radiologists (including NGC) served as
independent raters for the CT scans in the CQS500
dataset, They had corresponding experience of §, 12, and
20 years in cranial CT interpretation. None of the three
raters was involved in the clinical care or assessment of
the enrelled patients, nor did they have access to clinical
history of any of the patients. Each of the radiologists
independently evaluated the scans in the CQ500 dataset
with the instructions for recording the findings and
query resolution as shown in the appendix (pp 10-12}.
The order of presentation of the scans was randomised
so as to minimise recall of the patients’ follow-up scans.
Each of the raters recorded the following findings for
each scan: (1) the presence or absence of an intracranial
haemorrhage and if present, its types (intraparenchymal,
intraventricular, extradural, subdural, and subarachnoid);
(2) the presence or absence of midline shift and mass
effect; (3) the presence or absence of fractures, and if
present, if the fracture was (parily) a calvarial fracture.

A Development and Qure25k datasets

B Q500 dataset

| 313318 total scans

| 4462 total reports |

v

v v

¥

290055 scans for

development
dataset

23 263 scans for 285 potentially eligible reports for 4177 potentially eligible for alt
Qure25k scans dated Nov 28-Dec 20, other scans
dataset 2017 .

-—)I 877 postoperative patients |

r

(5]

21095 available scans

2386 available scans l 285 available scans

i l 440 reports selected through NLP |

~>| 1201 patients aged <7 years |

—b' 22 postoperative patients

| —bl 113 scans not available |

h 4 h 4

263 available scans

27 available scans |

wl

h A

—>| 28 non-contrast axial series not found

—>| 45 postoperative patients )

| 235 available scans

J | 282 available scans J

—-)| 21 patients aged <7 years J

—b|7 4 non-cantrast axia) series not found |

h 4

k.

first batch

214 available scans for CQ500

278 available scans

—D| 1 patient aged <7 years

L

277 available scanis for CQ500
second batch

Figure 1: Dataset selection process
NLP=natural language processing.
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Intra-axial presence of blood from any cause (such as
haemorrhagic contusion, or tumour or infarct with
haemorrhagic component) was included in the definition
of intraparenchymal haemorrhage. Chronic haemor-
thages were considered positive in this study. Mass
effect was defined as any of the following: local
mass effect, ventricular effacement, midline shift, or
herniation. Midline shift was considered positive if the
amount of shift was greater than 5 mm. If there was at
least one fracture that extended into the skullcap, the
scan was considered to have a calvarial fracture.

If unanimous agreement for each of the findings
was not achieved by the three raters, the interpretation of
the majority of the raters was used as the final diagnosis.

For the development and Qure25k datasets, we
considered clinical reports written by radiclogists as the
gold standard. However, these wete written in free text
rather than in a structured format. Therefore, a rule-
based NLP algorithm was applied on the radiologists’
clinical reports to automatically infer the target findings.
We validated this algorithm on a random subset of
reports from the Qure25k dataset to ensure that the
inferred information wag accurate and could be used as
gold standard. The validation was achieved by manually
labelling reports from this subset and comparing these
labels to the NLP algorithm’s outputs.

Assessment of the algorithms

We describe the development of the deep learning
algorithms in the appendix (pp 1-3). When run on a
scan, our algorithms produce a list of nine real valued
confidence scores in the range of 0-1 indicating the
presence of the following nine findings: intracranial
haemorrhage and each of the five types of haemorrhage,
midline shift, mass effect, and calvarial fracture. As
previously mentioned, the corresponding gold standards
were obtained using majority voting for the CQ500
dataset and by NLP algorithm of reporis for the Qure25k
dataset. Algorithms were assessed independently for
each finding,

For both CQ500 and Qure25k datasets, receiver
operating characteristic (ROC) curves® were obtained
for each of the target findings by varying the threshold
and plotiing the true positive rate (ie, sensitivity) and
false positive rate (ie, 1-specificity) at each threshold.
‘Two operating points were chosen on the ROC curve so
that sensitivity was approximately 0-9 (high sensitivity
point) and specificity approximately 0-9 (high specificity
point; see appendix p 5 for algorithm for operating point
choice}. Areas under the ROC curves (AUCs) and
sensitivities and specificities at these two operating
points were used to assess the algorithms.

Statistical analysis

“Sample sizes for proportions and AUCs were calculated
using normal approximation and the method outlined by
Hanley and McNeil,” respectively. The prevalence of our
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target abnormalities in a randomly selected sample of
CT scans tends to be low; therefore, establishing the
algorithms’ sengitivity with a reascnably high confidence
on an unenriched dataset would require very large
sample sizes. For example, to establish a sensitivity with
an expected value of 0-7 within a 95% CI of halflength
of .10, the number of positive scans to be read is
approximately 80. Similarly, for a finding with a
prevalence of 1%, to establish an AUC within a 95% Cl of
halflength of 0.05, the number of scans to be read is
approximately 20000.

The Qure25k dataset used in our study was randomly
sampled from the population distribution and had more
than 20000 scans in accordance with these sample size
caleulations. However, consiraints on the radiologist
time necessitated the previously mentioned enrichment
strategy for the CQ300 dataset. Manual curation of scans
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{by referring to the scans themselves) would have had
selection bias towards more visually significant positive
scans, We mitigated this issue by random selection, in
which positive scans were determined from the clinical
reporis.

We generated confusion matrices for each of the nine
critical CT findings at the selected operating points.
We then calculated 95% Cls for sensitivity and specificity
from these matrices using the exact Clopper-Pearson
method™ based on f distribution. 95% Cls of AUCs were
calculated following the distribution-based approach
described by Hanley and McNeil.® On the CQ500 dataset,
we measured the concordance between paired raters on
each finding using percentage of agreement and Cohen’s
k statistic.”® We also measured concordance between all
three raters on each finding using Fleiss’ k stalistic We
did all statistical analyses using scipy, scikit-learn, and
statsmodels python packages.

We have also attempted to compare the performance of
the algorithms to that of the radiologists. This was only
possible on the CQ500 dataset because each rater could
be compared with their consensus tc obtain their
performance metrics (see appendix pp 8-9 for details).

Role of the funding source

The funder of the study was involved in data collection,
data interpretation:, writing of the report, and the decision
to submit for publication. SC, RG, ST, PR, and PW had
access to all the data in the study, while NGC, VKV, and
VM had access to the CQ500 dataset only. SC, RG,
and ST were responsible for the decision to submit for
publication.

Results

In the Qure25k dataset, of the 23263 head CT scans
randomly chosen for validation, 21095 were eligible for
inclusion {figure 1). 4462 clinical reports were analysed in
the selection process of the CQ500 dataset. Of these,
285 were selected in the first batch and 440 in the second
batch. 71 scans in the first batch and 163 scans in

the second batch were excluded, resulting in a total of
491 scans. Reasons for exclusion were non-availability of
images {n=113), postoperative scans {n=67), scan had no
non-contrast axial series (n=32), and patient younger than
7 years (n=22).

Patient demographics and prevalences for each critical
finding on head CT scan are summarised in table 1
In the Qure25k dataset, 2494 scans were reported positive
for intracranial haemorrhage and 992 were positive for
calvarial fracture. The first batch of the CQ500 dataset
contained 35 scans teported positive for intracranial
haemorrhage and six positive for calvarial fracture. In the

‘second batch, 170 scaps were reported positive for

intracranial haemorrhage and 28 scans were positive for
calvarial fracture.

The NLP alporithm used to infer the target CT
findings from clinical reports in the Qure25k dataset
was evaluated on a total of 1779 reports. Sensitivity and
specificity of the NLP algorithm were fairly high; the
least performing finding was subdural haemorrhage
with a sensitivity of 0.93 (95% CI 0-81-0-99) and
specificity of 1-00 (0-99-1.00), whereas fracture was
inferred perfectly with sensitivity of 1.00 (0-97-1-00}
and specificity of 1-00 (1-00-1-00; table 2).

Concordance between the three raters on the CQ500
dataset was highest for intracranial haemorrhage
{Fleiss' «=0-78) and intraparenchymal haemorrhage
(Fleiss' k=0-77), representing excellent agreement for
these findings (table 3). Calvarial fracture and subdural
haemorrhage had the lowest concordance with Fleiss’

=0-45 and x=0-54, tespectively, indicating fair to
moderate agreement.

Table 4 and figure 2 summarise the performance of
the deep learning algorithms. On the QureZ5k set, the
algorithms achieved AUCs of 0-92 (95% CI 0-91-0-93)
for intracranial haemorrhage, 0-92 (0-91-0-94) for
calvarial fracture, and 0-93 (0-91-0-94) for midline shift.
The algorithms generally performed better on the
CQ500 dataset than on the Qure25k dataset. On the
CQ500 dataset, AUCs were 0-94 (95% CI1 0-92-0-97) for
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Intraventricular  0-9310 (0-8654-0-9965) 0-9286(0.7650-0-9912} 0-6652 (0.6202-0.7081)  0.8929 (0-7177-0.9773) 09028 (0-8721-0-9282) p
Subdural 0-9521 (0-9117-0-9925)  0:9434 (0-8434-0.9882) 07215 (06760-07630) 08868 (07697-0:9573) 0.9041(0-8726-0-9300) |
Extradural 0-9731(0-9113-1-0000)  0-9231 (0-6397-0-9981) 0-8828 (0.8506-0.9103)  0-8462 (0-5455-0-9808) 0.9477 (0-9238-0-9653) P
© Subarachnoid  0-9574 (0-9214-0-9934) 09167 (0-8161-0-0724) 08654 (0:5295-08962)  0-8667 (0.7541-0-9405) 0-0043 (0-8732-0-9308) | .
. Calvarialfracture  0-9624(0-9204-1-0000)  0-9487 (0-8268-0-9937) 0-8606 (0-8252-0-8912)  0:8718 (0-7257-0.9570) 0-0027 (0-8715-0-9284)
- Midline shift 0-9697 (3-9403-0-9991) 0-9385 {0-8499-0-0830) (8944 (0-8612-0-921%) 09077 {0-8098-0-9654) 0-9108 (0-8796-0-9361} i
. Mass effect O 9216 (0 3383-0 9543) 0 9055 (0 3403 U 9502) 0 7335 (0 6849-0 7782) D 8189 (0 7403—0 3316) 0-0038 (0-3688-0-9321)
Neltherofthedatasets was Used during the training process, AUCs amshownfor nime critical CT ﬁndlngsm boththseda, : 10 oper ' :
ROC curve for high sensitivity and high specificity, respectively. Absolute numberused for calculation of senS|t|wtyand 5p ity a :n the appendnx ® 7) Al area
the re:enveroperatlng characterlstic curvé. ROC=receiver operating characterlstlc :
Teble 4: Performance qfthe algorithms on the Qure25k and €Q500 _datasets

intracranial haemorrhage, 0-96 (0-92-1-00) for calvarial
fracture, and 0-97 (0-94-1.00) for midline shift.

In a comparison of the performance of the algorithms
to that of the radiologists on the CQ500 dataset, at high
sensitivity operating point, sensitivities of algorithms
and radiologists were not significantly different (p=0- 05}
but algorithms’ specificities were significantly lower
{p<0-0001; appendix pp 8-9).

Discussion
To our knowledge, our study is the first to describe the
development of a system that separately identifies critical
abnormalities on head CT scans and to conduct
a validation with a large number of scans sampled
uniformly from the population distribution. We also
report the algorithms accuracy versus a consensus of
three radiologists on a second independent dataset, the
CQ500 dataset. We have made this dataset and the
corresponding reads available for public access so that
they can be used to benchmark comparable algerithms in
the future. Such publicly available datasets had earlier
spurred comparisen of the algorithms in other tasks such
as lung nodule detection® and chest radiograph diagnosis.®
Automated and semi-automated detection of findings
from head CT scans have been studied by other groups.
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Grewal and colleagues® developed a deep learning
approach to automatically detect intracranial haermor-
rhages. They reporied a sensitivity of 0-8864 and a
positive predictive value (precision) of 0.8124 on a
dataset of 77 brain CT scans read by three radiologists,
However, the types of intracranial haemorrhage
considered were not mentioned in their report.
Traditional computer vision techniques such as morpho-
logical processing were used by Zaki and colleagues™ to
detect fractures and by Yamada and colleagues” to
retrieve scans with fractures. Neither of the two studies
measured accuracies on a clinical dataset. Automated
midline shift detecton was also explored™™ using
non-deep learning methods. Convolutional neural
networks were used by Gao and colleagues® to classify
head CT scans fo help diagnose Alzheimer’s disease.
More recently, Prevedello and cclleagues® assessed
the performance of a deep learning algorithm on a
dataset of 50 scans to detect haemorrhage, mass effect,
or hydrocephalus, and suspected acute infarct. The
investigators reported AUCs of 0-91 for haemorrhage,
mass eflect, or hydrocephalus, and 0-81 for suspected
acute infarct.

Our work is novel because it is the first large study in
which the use of deep learning on head CT scans is used

For more onthe CQ500 dataset

and corresponding reads see
http:/fheadctstudy.qure.aif
dataset
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Figure 2: ROC curves for the algorithms on Qure25k and CQ500 datasets

Individual raters’ true positive and false positive rates measured against their consensus on the CQ500 dataset are also plotted along with the ROCs for comparison.

ROC=receiver operating characteristic.

to detect and separately report accuracy for each critical
finding, including the five types of intracranial
haemorrhage. Furthermore, there is very little literature
to date describing the accurate use of deep learning
algorithms to detect cranial fractures. We demonstrate
that deep learning algorithms are able to perform this
task with high accuracy. The validation of algorithms that
detect mass effect and midline shift (both used to
estimate severity of a range of intracranial conditions
and the need for urgent intervention) in such a large
number of patients is also unique.

The algorithms produced fairly good results for all
the target findings on both the Qure25k and CQS500
datasets. AUCs for all the findings apart from mass
effect were greater than or approximately equal to 0-9.

AUCs on the CQ500 dataset were better than those
on the Qure25k dataset. We hypothesise that this might
be because of two reasons. First, because radiologists
reading the Qure25k dataset had acdess to clinical
history of the patients, their reads incorporated extra
clinical information not available in the scans. The
algorithms did not have access to this information and
therefore did not perform well. Second, a majority
vote of three raters is a better gold standard than that
of one rater. indeed, we observed that AUCs of the
algorithms on the CQ500 dataset were lower when a
single rater was considered the gold standard instead of
the majority vote {appendix p 5).

We expect that the Qure25k dataset and the first batch
of the CQ500 dataset represent the population distribution
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of head CT scans. This is because the Qure25k dataset
was randomly sampled from a large database of head CT
scans, whereas the first batch of the CQ500 dataset
consisted of all the head CT scans acquired at the selected
centres in a month. The observation that age, sex, and
prevalence statistics are similar for both datagets further
supports this hypothesis. The CQ500 dataset as a whole,
however, is not representative of the population because
the second batch was selected for higher incidence of
haemorrhages. Despite this difference in prevalence, our
performance metrics (ie, AUC, sensitivity, and specificity)
should represent the performance on the population
because these metrics are prevalence independent.

We did an informal gualitative analysis of the
algorithms’ outputs on the CQ500 dataset. The algo-
rithms produced good results for normal scans without
bleed, scans with medium to large sized intraparenchymal
and extra-axial haemorthages, haemorrhages with frac-
tures, and in predicting midline shift. There was room
for improvement for small-sized intraparenchymal,
intraventricular haemorrhages and haemorrhages close
to the skull base. In this study, we did not separate
chronic and acute haemorrhages. This approach resulted
in occasional prediction of scans with infarcts and
prominent cerebrospinal fluid spaces as intracranial
haemorrhages. However, the false positive rates of the
algorithms should not impede its usability as a triaging
tool. We show some accurate and erroncous predictions
of the algorithms in figure 3.

Our study has several limitations. Although the
selection strategy ensured that there were a substantial
number of positive scans in the CQ500 dataset for
most of our target findings, the number of scans with
extradural haemorrhage was found only to be 13. This
result made the confidence intervals of sensitivities of
extradural haemorrhage in this dataset wide. There is
also a risk of selection bias in the CQ500 dataset, perhaps
because ambiguously worded reports confounded the
NLP algorithm and therefore were missed while selecting
the second batch. However, this risk is minimal because
of the high accuracy of the NLP algorithrn when tested
on the reports used to select this dataset (appendix p5).

For the scans in.the CQ500 dataset, concordance
between the three radiologists was not very high for all
findings. In patticular, calvarial fracture had low Cohen’s
« of 0-58, 0-37, and 0-36 between the pairs of raters.
This result might be because of non-availability of clinical
history to the raters, We observed that the raters were
either very sensitive or very specific to a particular target
finding (appendix p 8). For example, two raters were
highly sensitive to calvarial fracture whereas the third
rater was highly specific.

Another limitation of our study is that we did not
exclude follow-up scans of patients from the CQ500
dataset, mainly because very few scans were reported
with some of our target abnormalities such as extradural
and intraventricular haemorthages. We could not present
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Accurate predictions: true positives

Intraparenchymal haemarrhage (in
left frontal region)

Subarachnoid haemorrhage (in left
parietal region)

Subdural hagmorrhage (chronic in
right parietal convexity)

Extradural haemarrhage (in right Calvarial fracture {in right parietal
frontal convexity) bane)

Calvarial fractura (in right temporal Midline shife Midlire shift
bone)

Erroneous predictions

False negative: tiny intraventricatar False positive: predicted as subdural False negative: calvarial fracture (in
haemorrhage haemerrhage right parietal bone)

Figure 3: Some accurate and erroneous predictions of the algotithms

the extent of this limitation because of non-availability of
unique identifiers of patients in this dataset. Existence of
follow-up images in the dataset might mean that the
scans are not independent of each other, and therefore
presented 95% Cls might be too tight.

In this study, we have limited our algorithm to the
detection of calvarial (cranial vault) fractures. Another
misging component is a thoroughly validated algorithm
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that localises lesions. Both of these are important for a
clinical decision support syster.

Our results show that deep learning algorithms can be
trained to detect critical findings on head CT scans with
good accuracy. The strong performance of deep leaming
algorithms suggests that they could be a helpful adjunct
for identification of acute head CT findings in a trauma
setting, providing a lower performance bound for quality
and consistency of radiological interpretation. We think
that it might also be feasible to automate the triage process
of head CT scans with these algorithms. This approach
might improve radiologist efficiency, but it is also possible
fhat over-reliance on such a triage might lead to automation
bias in radiclogists whereby false negative scans are
overlooked. A prospective clinical frial is necessary to
determine the safety and efficacy of such a triage and if it
ultimately improves patient care and outcomes,
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